Production

After stiff competition, Boeing announced on December 16, 2003, that the 787 would be assembled in Everett, Washington. Instead of building the complete aircraft from the ground up in the traditional manner, final assembly employs just 800 to 1,200 people to join completed sub-assemblies and integrate systems. This is a technique that Boeing has previously used on the 737 program, which involves shipping fuselage barrel sections by rail from Spirit AeroSystems' Wichita, Kansas, facility to Boeing's narrowbody final assembly plant in Renton, Washington. As the major components have many components pre-installed before delivery to Everett, final assembly time is reduced to only three days. This is less than a quarter of the time traditionally needed for Boeing's final assembly process.  In order to speed delivery of the 787's major components, Boeing has modified three 747s purchased from Chinese and Taiwanese airlines. Called Dreamlifters, these widened airplanes can house the wings and fuselage of the 787 as well as other smaller parts.

Boeing's Everett Facility, selected as the site of 787 final assembly.


Boeing manufactures the 787's tail fin at its plant in Frederickson, Washington, the ailerons and flaps at Boeing Australia, and fairings at Boeing Canada Technology. For its entire history, Boeing has guarded its techniques for designing and mass producing commercial jetliner wings. For economic reasons, the wings are manufactured by Japanese companies in Nagoya such as Mitsubishi Heavy Industries, which also makes the central wing box. The horizontal stabilizers are manufactured by Alenia Aeronautica in Italy; and the fuselage sections by Alenia and Vought in Charleston, South Carolina (USA), Kawasaki Heavy Industries in Japan and Spirit AeroSystems, in Wichita, Kansas (USA). The subcontractors are all designing with CATIA V5.


The passenger doors are made by Latécoère (France), and the cargo doors, access doors, and crew escape door are made by Saab (Sweden). Japanese industrial participation is very important to the project, with a 35% work share, and many of the subcontractors supported and funded by the Japanese government. On April 26, 2006, Japanese manufacturer Toray Industries and Boeing announced a production agreement involving $6 billion worth of carbon fiber. The deal is an extension of a contract signed in 2004 between the two companies and eases some concerns that Boeing might have difficulty maintaining its production goals for the 787. On February 6, 2008, TAL Manufacturing Solutions Limited, a subsidiary of the Tata Group (India) announced a deal to deliver floor beams for the 787 from their factory at Mihan, near Nagpur, India to assembly plants in Italy, Japan and the United States.


Messier-Dowty (France) builds the landing gear, which includes titanium forged in Russia, and brake parts from Italy, and Thales supplies the integrated standby flight display and electrical power conversion system.  Honeywell and Rockwell-Collins provide flight control, guidance, and other avionics systems, including standard dual head up guidance systems. Future integration of forward-looking infrared is being considered by Flight Dynamics allowing improved visibility using thermal sensing as part of the HUD system, allowing pilots to "see" through the clouds. Connecticut (USA)-based Hamilton Sundstrand provides power distribution and management systems for the aircraft, including manufacture and production of Generator Control Units (GCUs) as well as integration of power transfer systems that can move power from the Auxiliary Power Unit (APU) and the main engines to the necessary parts and machinery of the aircraft. Cold weather test of the APU took place in Alaska.


The first composite fuselage section rolled out in January 2005, and final external design was set in April 2005. On June 30, 2006, Boeing celebrated the start of major assembly of the first 787 at Fuji Heavy Industries' new factory in Handa, Japan, near Nagoya. On December 6, 2006, Boeing conducted a "virtual rollout" of the 787 in which a simulation of the 787's manufacturing process was shown publicly. Performed using the project's Catia design tool, the simulation was intended to discover production issues prior to assembly of the first airframe, when they are cheaper to fix.


On January 12, 2007, first major assemblies, forward fuselage, center wing, and center wheel well built by FHI and KHI were shipped on Dreamlifters from Nagoya, Japan. They were delivered to Global Aeronautica in Charleston, South Carolina, on January 15. On March 14, 2007, the first production vertical tail fin was rolled out at Boeing's Composite Manufacturing Center in Frederickson, Washington. On April 16, the first production all-composite nose-and-cockpit section (Section 41) was rolled out at Spirit Aerosystem's plant in Wichita, Kansas. Comprising the cockpit area, nose landing gear well, and the forward-most section of the passenger area, this oval-shaped section is 21 feet (6.4 m) in height, 19 feet (5.74 m) in width and 42 feet (12.8 m) in length. A Dreamlifter delivered the first horizontal stabilizer manufactured by Alenia Aeronautica at its facility in Grottaglie, Italy to Everett on April 24.[36] On May 8, 2007, Vought rolled out completed rear Sections 47 and 48 from its factory in Charleston, SC. The sections were flown via the Dreamlifter to Everett, arriving on May 11 along with the all-composite forward section (section 41) manufactured by Spirit AeroSystems.


Three 747 Dreamlifters are used to transport 787 fuselage sections.


The Dreamlifter was also used to ship the first 787 carbon-fiber wings from Mitsubishi Heavy Industries Ltd.'s factory in Nagoya to Everett on May 15, 2007. The final major assembly, the integrated midbody fuselage, followed the next day, allowing 787 final assembly to began on May 21. Rolls-Royce shipped the first pair of Trent 1000 engines from their Derby, UK facilities on schedule on June 7, and on June 26, 2007 LN1/ZA001 had finished major assembly and was towed to the paint hangar in the early morning.


An important milestone in the launch of the 787 was the on-time certification of the Rolls-Royce Trent 1000 engine on August 7, 2007 by European and US regulators. The alternative GE GEnx-1B engine achieved certification on March 31, 2008.  On August 20, 2007, Hamilton Sundstrand stated that it had delivered its first two cabin air conditioning packs to Boeing for the initial flight-test of the 787 Dreamliner. On June 20, 2008, the 787 team achieved "Power On" of the first aircraft, powering and testing the aircraft's electrical supply and distribution systems.


In addition to the flight test aircraft, Boeing has also constructed a non-flight 787 airframe which has been built without engines or horizontal stabilizers and will be used for static testing. The composite wing may not be broken during the tests, as this would require an expensive cleanup afterwards. On September 27, 2008, over a period of nearly two hours, the fuselage was successfully tested at 14.9 psi (102.7 kPa), this being 150 percent of the maximum pressure expected in commercial service (i.e., when the plane is at maximum cruising altitude).[48] In December 2008 FAA passed the maintenance programme for the 787.

Copyright 2012